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I.ElTER TO THE EDITOR 

Critical behaviour in parabolic geometries 

kgc  ?esche!t, mi: T.rb2, 2nd Rrcnc !g!6i$ 
Labomloire de Physique du Solides, UniversiM de Nancy I, BP239, F-54506 V a n d u w  
Ib Nancy Cedex, Fmnce 

Received IS July 1991 

~ b s ( m e ~  -We study iwo-dimensionai systems with boundary CUNCP described by paver 
laws. Using conformal mappings we obtain Ihe correlations at the bulk crilical point. 
Thm different c l a w  of behaviour are found and explained by scaling arguments which 
also apply to higher dimensions. For an king system of parabolic shape the behaviour 
of the order a1 the tip is also found. 

The shape of a system undergoing a second-order phase transition can have a strong 
influence on its critical behaviour. This is shown by the results for edges (in 3D) 
or corners (in 2D). The local critical exponents are then continuous functions of the 
corresponding angle [ld]. But this striking feature also raises the question which 
property of the boundary actually causes it and what would be obtained for other 
shapes. For the critical behaviour long-range effects are essential and thus a simple 
rounding of the comer will not matter [7]. We therefore study here shapes which 
differ from the corner geometry in the large: the boundary curves are described 
by power laws and do not have asymptotes. The prototype is the parabola. We 
use conformal mappings to obtain the critical correlation functions for various two- 
dimensional geometries. When the system forms the interior of a general parabolic 
figure, we find a new unusual form of the critical behaviour. When the system forms 
the exterior, on the other hand, one recovers the behaviour of a system with either a 
straight surface or a cut. These results can be understood from the way the boundary 
curves behave under renormalization. A similar classification will therefore hold in 
three dimensions. Our results at the critical point are complemented by a calculation 
of the tip magnetization for an king model of parabolic shape which also shows 
unusual features. 

Consider first a system with free boundaries in the form of a simple parabola 
uZ = 2pu + p 2  in the plane w = U + iu as in figure l(a). It can be related to the 
half-plane z = z + iy, y > 0 by the conformal map 
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F@re 1. ?he three lypes of geomelria considered in lhe ta l .  

At criticality, the correlation function in the half-piane has the form [3] 

G(zi, ~ 2 )  = (Y~Y~) - ’+ (w)  
where the scaling function depends on the variable w = 4y,y2/ I z ,  - r2 1’ and has 
the asymptotic form +(w) - w*1 for small w. Here 2‘ and z, denote the bulk and 
surface scaling dimensions, respectively, of the operators in G. Using the standard 
transformation [SI, one finds in the parabolic geometry 

where the rescaling factors are 
G ( w , , w 2 )  = X ~ X ~ ( c o s h ~ , c o s h ~ 2 c o s o , c o s ~ , ) ~ z ~ ( w )  (3) 

and we have used parabolic coordinates T- = C + iq. The system is then 
characterized by 0 4 q 4 r / 2 .  If w,, w2 lie on the positive U-axis, the variable w 
is given by w = 4 cosh C, cosh C2/(cosh C1 - cosh C2)’. One then finds for C, fixed 
and C2 B 1 B P )  

This is not a simple power law in u2 as one finds for a corner, which clearly shows the 
difference between the two cases. It also differs from the result in a strip. However, 
if both ul, u2 > p and & - >> fi, it can be written as 

(6 j 

with L(u) = 2- being the width of the system at position U. If in addition 
u2 - U, < ( u2 + u,)/2 = U, an expansion around U in (6) gives back the strip result 
[8]. In this sense, the parabola can be considered as a strip of varying width. 
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If one fixes the boundary variables one can also discuss the order parameter 
profile. A transformation as in (3) then gives, for w = U > 0, 

Thus (6) - 
exponent, however, is still different from its value I found for a comer. 

form 

for U > p and there is no exponential factor in this case. The 

One can easily generalize the treatment to boundaries which have the asymptotic 

v =  f C U "  a < l .  (8) 

One merely has to shift the parabola into the right half-plane and then to distort it. 
m:" " _^.. ..." .- .La m"ln^n...n". 
1 LIW LIll lVYllW L I J  L l l r  r = p " a r n r r r r  

in equation (1). The quantity C is then C = ( 2 p ) ' - " / 2 ( 1  - a). This changes the 
rp.._.!f /<i for c-' 

\"I --. 
1 C( tulr w 2 )  = A( ul) - exp 

U;= 

The functional form of G thus varies continuously with the parameter a describing 
the boundary shape. The more this shape approaches the corner geometly (a -+ l), 
the slower the exponential fall-off becomes. On the other hand, for a = 0 the system 
forms a half-strip and one recovers the corresponding simple exponential decay [8,9]. 
For a < 0, it has a spoon-like shape and the decay becomes very rapid in the narrow 
region. 

We now turn to a system in the shape of figure l(b). Here the boundary is curved 
towards the outside, so that a > 1 in equation (8). ?b relate it to the upper r-plane 
one has to use a different mapping, namely 

where s = 1 - l / a .  Asymptotically, one now has z = iw and the rescaling factor 
I d w / d z  appearing in  the transfnrmatinn of G becomes one. Therefore, for wli 'mi 
on the axis, with ut k e d  and u2 - CO, one always obtains the result of the half-plane 

(12) 
1 

G(wi,  202)  = A(~i)~r+21. 
2 

In this sense, this type of boundary is equivalent to a straight surface. 

ure l(c), can be obtained via a mapping 
Finally, a system with a cut-out portion in the form of equation (8)  as in fig- 
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where now s = 1 - a and a < 1 again. Asymptotically, the relation therefore is, for 
all a, z = i f i .  But with such a transformation one maps the r-half-plane onto the 
tu-plane with a cut [2-4]. The correlation function therefore is asymptotically 

1 
(14) G(w, ,w2)  = A(U1)U1+21 

2 

with the corner exponent x 2  = ix l  corresponding to the cut. 
The preceding results can be understood if one considers the behaviour of the 

boundary curve, equation ( S ) ,  under a change of scale in a renormalization procedure. 
With U' = u/b, v' = v / b  it becomes 

U' = -+b"'-'C(u')" (15) 

or 

C' = b*-'C. (16) 

Thus, for a > 1, C grows under renormalization and the boundary curve approaches 
a straight line. For a = 1, C is invariant and thus a marginal variable. This 
explains the particular role of a corner formed by two straight lines. For a < 1, C 
decreases and the system approaches either a cut geometry or a one-dimensional line 
geometry. In the latter case, however, one has a non-ordering system and this causes 
the particular features of the parabolic geometry. 

According to equation (16), 1/C may be considered as a scaling field with di- 
mension 1 - a (like 1 / L  in finite-size scaling). It vanishes at the half-plane fixed 
point. One may therefore write the following scaling ansatz for the correlations along 
the u-axis 

With b = Cl/'-", one gets 

where L ( u )  = 2Cu" is the width of the system at U. Equation (6) can thereby be 
generalized to any value of a < 1 with the scaling function given by 

when a,, a2 B 1 and a2 - a, >> 1. This can also be verified explicitly. The scaling 
behaviour of the order parameter profile is obtained in the same way and reads 

where, according to equation (7). lima-- f ( a )  = O(1). 
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Relations like (18) and (20) correspond to a local formulation of finite-size scal- 
ing. One may also notice that all these scaling considerations still apply in higher 
dimensions. 

Finally, let us address briefly the ordered state. A priori, it is not obvious that a 
system in the shape of figure l(a) will order at all. We have therefore studied an Ishg 
model with parabolic shape v = i C f i ,  using the corner transfer matrix technique 
[lo]. This means that one considers the transfer matrix connecting the spins at the 
upper and lower boundaries with fixed boundary condition on the right end of the 
system. Assuming a square lattice in the Hamiltonian limit [ll] one then is led to 
study the following operator (describing an inhomogeneous transverse king chain) 

(21) 1 N-1 

H = -C fi U: + X c U ~ C T ~ + ~  [::: n=ll 

where A-’ measures the temperature and N is the size of the system along the axis. 
The coefficients reflect, in the sense of a continuum limit, the number of vertical 
and of horizontal bonds at position h, respectively. The transverse field vanishes at 
n = 0 due to the absence of vertical bonds for the first spin and at n = N as a 
consequence of the boundary condition. The operator can be diagonalized in terms 
0: f a i s h i S .  ‘EX ~ing:e+irtkk e~ci;iiti~a eiizigie~ 6” = 2Cwy t h ~ ~  f d : ~ +  k i i i  

n X K 1 +  n ( A 2  + 1)%% + nX+;+l = we+:: (22) 

with appropriate boundary conditions at n = 0 ,  N .  This system of equations is 
similar to one studied previously in a related context [E] and, as there, can be solved 
Vhth Ga!tlieb pn!ynnmh!s. !E ?he ! h i t  N - m me.  finds, for A > lj  

u,=J- u = 1 , 2 , 3 . . .  . (23) 

Identifying the boundaries, the magnetization at the tip of a system which is isotropic 
at the critical point, is given by [ l O J l ]  

Evaluating this near the critical point ( A  2 1) leads to 

where a = 7C(3)/16 0.526. Thus there is order, but it vanishes exponentially fast 
at the critical point. This reflecs the difficulty to maintain it in such a geometry. We 
note that the argument in the exponential can be expressed as the ratio E / p  where 
( - ( A  - I)-’ -, t-” is the bulk correlation length. 

The behaviour of the tip magnetization may also be deduced from scaling consid- 
erations. The magnetization at position U along the axis satisfies 

U bl-* ( A) ( b ’  -> C m t ,u,-  = b - ” m  b ’ l ” t , -  
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which, with b = t-", leads to 

where p and U are bulk exponents. 
One may even go further assuming that, at the tip, the leading contribution to 

the magnetization which is induced by the bulk at a distance D - ((/C)l/" (where 
the wi-dth nf the svstem ,----- is nf the ~ r d e r  af the bu!L mrre!itiar !ecg!L), decqs .Y"h 
D l i e  the correlation function in (10) when u1 - 0 and u2 = D > Cl/'-". Then 

C(1-a) 

and the temperature dependence of the tip magnetization follows 

in agreement with (24) for the Ising parabola with a = i and U = 1. 
One should mention that the results (10) for the correlation function and (29) 

for the order parameter are quite similar to those obtained for an Ising mode! with 
bond strengths decreasing towards a free surface as IC(n) = IC(cu)(l - A/.!'), 
y < 1 [13-15] with the correspondences y - a, A ++ C.  This can be understood 
qualitatively since in both cases the surface order near the critical point can only be 
maintained through the action of the far-away bulk portion of the system. 

Finally, for an anisotTopic system with correlation length exponents vi, (along the 
waxis! + uI: the scaling dimension of l/C is changed into 1 - a u i i / u l .  Therefore 
the perturbation to the half-plane geomeby then becomes relevant when (I < ul /u l i .  
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in Nancy. FI gratefully acknowledges the financial support of the Ministhe Franqis 
des Maires Etrangkres through a research grant. 
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